3.104 \(\int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx\)

Optimal. Leaf size=108 \[ -\frac {2 (11 A-B) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {A x}{a^3}-\frac {(7 A-2 B) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}-\frac {(A-B) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

[Out]

A*x/a^3-1/5*(A-B)*tan(d*x+c)/d/(a+a*sec(d*x+c))^3-1/15*(7*A-2*B)*tan(d*x+c)/a/d/(a+a*sec(d*x+c))^2-2/15*(11*A-
B)*tan(d*x+c)/d/(a^3+a^3*sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 108, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3922, 3919, 3794} \[ -\frac {2 (11 A-B) \tan (c+d x)}{15 d \left (a^3 \sec (c+d x)+a^3\right )}+\frac {A x}{a^3}-\frac {(7 A-2 B) \tan (c+d x)}{15 a d (a \sec (c+d x)+a)^2}-\frac {(A-B) \tan (c+d x)}{5 d (a \sec (c+d x)+a)^3} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^3,x]

[Out]

(A*x)/a^3 - ((A - B)*Tan[c + d*x])/(5*d*(a + a*Sec[c + d*x])^3) - ((7*A - 2*B)*Tan[c + d*x])/(15*a*d*(a + a*Se
c[c + d*x])^2) - (2*(11*A - B)*Tan[c + d*x])/(15*d*(a^3 + a^3*Sec[c + d*x]))

Rule 3794

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> -Simp[Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 3919

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(c*x)/a,
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 3922

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[((b
*c - a*d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(b*f*(2*m + 1)), x] + Dist[1/(a^2*(2*m + 1)), Int[(a + b*Csc[e
+ f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f},
 x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rubi steps

\begin {align*} \int \frac {A+B \sec (c+d x)}{(a+a \sec (c+d x))^3} \, dx &=-\frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {\int \frac {-5 a A+2 a (A-B) \sec (c+d x)}{(a+a \sec (c+d x))^2} \, dx}{5 a^2}\\ &=-\frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(7 A-2 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}+\frac {\int \frac {15 a^2 A-a^2 (7 A-2 B) \sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^4}\\ &=\frac {A x}{a^3}-\frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(7 A-2 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {(2 (11 A-B)) \int \frac {\sec (c+d x)}{a+a \sec (c+d x)} \, dx}{15 a^2}\\ &=\frac {A x}{a^3}-\frac {(A-B) \tan (c+d x)}{5 d (a+a \sec (c+d x))^3}-\frac {(7 A-2 B) \tan (c+d x)}{15 a d (a+a \sec (c+d x))^2}-\frac {2 (11 A-B) \tan (c+d x)}{15 d \left (a^3+a^3 \sec (c+d x)\right )}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.60, size = 241, normalized size = 2.23 \[ \frac {\sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {1}{2} (c+d x)\right ) \left (270 A \sin \left (c+\frac {d x}{2}\right )-230 A \sin \left (c+\frac {3 d x}{2}\right )+90 A \sin \left (2 c+\frac {3 d x}{2}\right )-64 A \sin \left (2 c+\frac {5 d x}{2}\right )+150 A d x \cos \left (c+\frac {d x}{2}\right )+75 A d x \cos \left (c+\frac {3 d x}{2}\right )+75 A d x \cos \left (2 c+\frac {3 d x}{2}\right )+15 A d x \cos \left (2 c+\frac {5 d x}{2}\right )+15 A d x \cos \left (3 c+\frac {5 d x}{2}\right )-370 A \sin \left (\frac {d x}{2}\right )+150 A d x \cos \left (\frac {d x}{2}\right )-60 B \sin \left (c+\frac {d x}{2}\right )+40 B \sin \left (c+\frac {3 d x}{2}\right )-30 B \sin \left (2 c+\frac {3 d x}{2}\right )+14 B \sin \left (2 c+\frac {5 d x}{2}\right )+80 B \sin \left (\frac {d x}{2}\right )\right )}{480 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Sec[c + d*x])/(a + a*Sec[c + d*x])^3,x]

[Out]

(Sec[c/2]*Sec[(c + d*x)/2]^5*(150*A*d*x*Cos[(d*x)/2] + 150*A*d*x*Cos[c + (d*x)/2] + 75*A*d*x*Cos[c + (3*d*x)/2
] + 75*A*d*x*Cos[2*c + (3*d*x)/2] + 15*A*d*x*Cos[2*c + (5*d*x)/2] + 15*A*d*x*Cos[3*c + (5*d*x)/2] - 370*A*Sin[
(d*x)/2] + 80*B*Sin[(d*x)/2] + 270*A*Sin[c + (d*x)/2] - 60*B*Sin[c + (d*x)/2] - 230*A*Sin[c + (3*d*x)/2] + 40*
B*Sin[c + (3*d*x)/2] + 90*A*Sin[2*c + (3*d*x)/2] - 30*B*Sin[2*c + (3*d*x)/2] - 64*A*Sin[2*c + (5*d*x)/2] + 14*
B*Sin[2*c + (5*d*x)/2]))/(480*a^3*d)

________________________________________________________________________________________

fricas [A]  time = 0.43, size = 138, normalized size = 1.28 \[ \frac {15 \, A d x \cos \left (d x + c\right )^{3} + 45 \, A d x \cos \left (d x + c\right )^{2} + 45 \, A d x \cos \left (d x + c\right ) + 15 \, A d x - {\left ({\left (32 \, A - 7 \, B\right )} \cos \left (d x + c\right )^{2} + 3 \, {\left (17 \, A - 2 \, B\right )} \cos \left (d x + c\right ) + 22 \, A - 2 \, B\right )} \sin \left (d x + c\right )}{15 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

1/15*(15*A*d*x*cos(d*x + c)^3 + 45*A*d*x*cos(d*x + c)^2 + 45*A*d*x*cos(d*x + c) + 15*A*d*x - ((32*A - 7*B)*cos
(d*x + c)^2 + 3*(17*A - 2*B)*cos(d*x + c) + 22*A - 2*B)*sin(d*x + c))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x
+ c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

________________________________________________________________________________________

giac [A]  time = 0.65, size = 121, normalized size = 1.12 \[ \frac {\frac {60 \, {\left (d x + c\right )} A}{a^{3}} - \frac {3 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 20 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 10 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 105 \, A a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 15 \, B a^{12} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{15}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

1/60*(60*(d*x + c)*A/a^3 - (3*A*a^12*tan(1/2*d*x + 1/2*c)^5 - 3*B*a^12*tan(1/2*d*x + 1/2*c)^5 - 20*A*a^12*tan(
1/2*d*x + 1/2*c)^3 + 10*B*a^12*tan(1/2*d*x + 1/2*c)^3 + 105*A*a^12*tan(1/2*d*x + 1/2*c) - 15*B*a^12*tan(1/2*d*
x + 1/2*c))/a^15)/d

________________________________________________________________________________________

maple [A]  time = 0.80, size = 137, normalized size = 1.27 \[ -\frac {A \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}+\frac {B \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{20 d \,a^{3}}+\frac {\left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{3 d \,a^{3}}-\frac {B \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{6 d \,a^{3}}-\frac {7 A \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}+\frac {B \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d \,a^{3}}+\frac {2 \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right ) A}{d \,a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x)

[Out]

-1/20/d/a^3*A*tan(1/2*d*x+1/2*c)^5+1/20/d/a^3*B*tan(1/2*d*x+1/2*c)^5+1/3/d/a^3*tan(1/2*d*x+1/2*c)^3*A-1/6/d/a^
3*B*tan(1/2*d*x+1/2*c)^3-7/4/d/a^3*A*tan(1/2*d*x+1/2*c)+1/4/d/a^3*B*tan(1/2*d*x+1/2*c)+2/d/a^3*arctan(tan(1/2*
d*x+1/2*c))*A

________________________________________________________________________________________

maxima [A]  time = 0.42, size = 160, normalized size = 1.48 \[ -\frac {A {\left (\frac {\frac {105 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {20 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}}{a^{3}} - \frac {120 \, \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}\right )} - \frac {B {\left (\frac {15 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {10 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac {3 \, \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}\right )}}{a^{3}}}{60 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

-1/60*(A*((105*sin(d*x + c)/(cos(d*x + c) + 1) - 20*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(co
s(d*x + c) + 1)^5)/a^3 - 120*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/a^3) - B*(15*sin(d*x + c)/(cos(d*x + c) +
 1) - 10*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*sin(d*x + c)^5/(cos(d*x + c) + 1)^5)/a^3)/d

________________________________________________________________________________________

mupad [B]  time = 2.13, size = 133, normalized size = 1.23 \[ \frac {A\,x}{a^3}+\frac {{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {A\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{3}-\frac {B\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3}{6}\right )-{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (\frac {7\,A\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}-\frac {B\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4}\right )-\frac {A\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}+\frac {B\,{\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5}{20}}{a^3\,d\,{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B/cos(c + d*x))/(a + a/cos(c + d*x))^3,x)

[Out]

(A*x)/a^3 + (cos(c/2 + (d*x)/2)^2*((A*sin(c/2 + (d*x)/2)^3)/3 - (B*sin(c/2 + (d*x)/2)^3)/6) - cos(c/2 + (d*x)/
2)^4*((7*A*sin(c/2 + (d*x)/2))/4 - (B*sin(c/2 + (d*x)/2))/4) - (A*sin(c/2 + (d*x)/2)^5)/20 + (B*sin(c/2 + (d*x
)/2)^5)/20)/(a^3*d*cos(c/2 + (d*x)/2)^5)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \frac {\int \frac {A}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx + \int \frac {B \sec {\left (c + d x \right )}}{\sec ^{3}{\left (c + d x \right )} + 3 \sec ^{2}{\left (c + d x \right )} + 3 \sec {\left (c + d x \right )} + 1}\, dx}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c))/(a+a*sec(d*x+c))**3,x)

[Out]

(Integral(A/(sec(c + d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x) + Integral(B*sec(c + d*x)/(sec(c +
d*x)**3 + 3*sec(c + d*x)**2 + 3*sec(c + d*x) + 1), x))/a**3

________________________________________________________________________________________